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NATTONAL ADVISORY COMMITTEE FOR AFRONAUTICS
TECHENICAL NOTE 3690

NORMAL COMPONENT OF INDUCED VELOCITY IN THE VICINITY
OF A LIFTING ROTOR WITH A NONUNIFORM DISK LOADING

By Harry H. Heyson and S. Katzoff
SUMMARY

Part T presents a method for computing, from available calculastions
for uniform disk loading, the effect of nonuniform circulerly summetrical
disk loading on the normal component of induced velocity 1n the viecinity
of & lifting rotor. Charts of the normal component of induced veloclty
sre glven for the longltudinal plane of symmetry and for the major axes
of rotors with two different, nonuniform circularly symmetrical disk
load distributions. It is shown that the normal component of induced
velocity must be zero at the center of any practicsl rotor.

A compeariscon of the results of this paper with those for a uniform
disk loading shows that nonuniform disk loading has a powerful effect
on the induced velocity distribution and that it must be taken into
account in estimating .the effect of the rotor on most components of an
elreraft.

Part IT develops certein symmetry relations for the induced veloc-
ities in the plane of & uniformly loaded rotor and also develops relations
between the rsdial load distribution of the rotor and the radial varia-
tion of induced veloclties in the wake.

INTRODUCTICON

Recent rotery-wing designs incorporate tails for increased st _bility
and auxiliasry wings for improved forward-~flight performance. Any estimate
of the behavior of the complete sircraft depends upon a knowledge of the
flow induced by the rotor in the nelghborhood of these auxiliary lifting
surfaces. Such informetlon 1s relstively meager. The only avallable
anglyticel treatment is that of reference 1, which cslculates the normal
component of induced velocity of a uniformly loaded 1ifting rotor along
1ts major exes and In its longltudinal plane of symmetry. Although the
assumption of uniform disk losding and the fact that the calculations
were made for only one plene are obvious limitations of reference 1, it
was nevertheless hoped that the results would give useful indicetions
of the ddwnwash over small-span suxiliary lifting surfaces.
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.Wind~tunnel flow surveys (ref. 2), however, indicate that there may
be very little relation between the downwaesh gliven in reference 1 and the
downvwash for an actual rotor. For example, large variations in induced
velocity across the lateral axis of the rotor were observed, whereas the
calculations  -show no veriation at all zcross the lateral axis. Probably
the main cause of the variation of induced wveloclty along the latersl
axis 1s that the disk losding 1s not unitorm as 1s sssumed in reference 1.
The purpose of the present paper 1s to study the vonsequences of this
nonuniformity of disk loading.

Part I describes g method of superposition, by means of which the
results of reference 1 may be used to calculate the induced flow about
rotors having an arbitrary circularly symmetrical distribution of rotor
disk loading. Calculated results are presented for two rotors having
different nonuniform disk loadings. These results show how the distribu-
tion of disk loading affects the downwash, and are used in reference 2 to
explain the measured distribution of induced .velocity.

Part II contains analytical treatments of some interesting charac-
teristics of the downwash field that were observed during the course of
the calculations for part I. More specifically, part II develops certain
symmetry relations for the induced velocitles in the plane of the uniformly
loeded rotor and also develops relstions between the radisl loasd distribu-
tion of the rotor and the radlal variatlon of induced velocities in the
wake. ! - _

I. DEVELCPMENT OF INDUCED VELOCITY FIEIDS BY SUPERPOSITION

By Herry H. Heyson

Symbols for Part I

b number of blades

L 1ift, 1b

r biade—eleient redius, Tt

R rotor radius, ft -

R, radius of vortex cylinder, ft

v normel component of induced velocity, positive downward, ft/sec
Vo average, or momentum, value of the normal component of induced

velocity, positive downward, ft/sec
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X distance paralilel to longitudinal rotor tip-path-plane axis,
measured positive rearward from center of rotor (fig. l), £t

Y distance parallel to lateral rotor tip-path-plane sxis, measured
posltive on advancing side of disk from center of rotor
(fig. 1), ft

z distance parallel to vertlical rotor tip-path-plsne axis,
measured posltive upward: from center of rotation (fig. 1), ft

r ' circulation, £t2/sec

't circulation at tip of blade, £t2/sec

mass denslty of air, slugs/ft3

X rotor waeke skew angle, engle between the Z-axis of the tip-path
plene and the axis of the skewed wake, positive rearward from
Z-axis (fig. 1), deg

Q rotor anguler velocity, radilens/sec

Theory

The weke considered as a system of coexlal vortex cylinders.- For
the present slmplified theory, the forward speed of the rotor is assumed
negligible relative to the rotational speed of the blades. Then, at any
radisl location, the local velocity of & blade element 1s simply Qr, so
that the 1ift per unit radiasl distance can be written

ar
5 = beerl (1)

where T, in genersl, is a function of r. The locgl disk loading (or
annulus loasding) is

bpQr[ dr _ -‘bparl

Local disk loading =
2xr 4r 2

(2)

Tn general, as illustrated by equations (1) and (2), the locel disk
loading varies ss -% times the blsde loading. Thus, a uniform disk

lcading implles a triangulsr blade loeding, and a triangular disk loading
implies a psrabolic blade losding.



b : NACA TN 3690

Equation (2) alsc shows that for a uniform disk loading the circula- *
tion 1is constant along the blade. For this case, vorticity is accordingly
shed only at the blade tips, end the weke consists of a single vortex »

cylinder. In references 1 and 3, where the lifting rotor is represented ) _
by a uniformly losded disk, the downwash fileld is correspondingly celcu-
lated as the downwash field of this single vortex cylinder.

If, however, the disk loading is not uniform, the circulation varles
along the length of the blade and vorticity must be shed =211 glong the
blaede instead of—conly at the tip. Consequently, a rotor having nonuniform
disk loading must—be represented by a distribution of shed vortex
cylinders.

In the present calculations, these cylinders are all assumed parallel
and concentric (see fig. 2(b)) and are inclined at a skew angle defined
by the forward velocity of the rotor and the momentum-~theory value of
the rotor induced velocity. Such an assumption presents obvious incon-
sistencles, because such an ldealized geametry could -not be produced or
mainteined in the nonuniform induced-flow field that it itself creates. v
In spite of such inconsistencies, however, the arrangement of concentric
cylinders is probsbly a better basis for computations than a single vortex
cylinder trailing from the blade tips. . s

It 1s possible to consider that the solutlon of reference 1 represents
the flow generdted by any one of these vortex cylinders. The radius used
in that report should now be considered to be the radius Ry of the

individual vortex cylinder. The contribution of any single vortex
cylinder to the total induced flow at a point (R’R’Z) mey be read directly

from the charts of reference 1 at the point [(X/R)(R/Rv), (Y/R)(R/Ry),
(z/R) (R/Rv)] . .

In practice, any arbitrary circularly symmetrical rotor disk-load
distribution may be approximated by the sum of the loads carried by a
finite number of superposed concentric vortex cylinders of suitable
strength and dimenslons. Then the induced wvelocity field of-the non-
uniformly loaded rotor will be the sum of the superposed induced veloclty
fields of the vortex cylinders comprising its wake.

Some difficulty mey be anticipated because of the discontinulties in
the flow at the edges of the vortex cylinders. In practice, however, only
a small error occurs 1f a sufflclent number of vortex cylinders are
used, and the points of discontinuity themselves are avolded.

Sample calculation.- In order to demonstrate the method of super-
position, the induced velocity at the point'(E = 0.2, T o, % = 019 -

R R
wlll be calculated for a rotor with a triangular disk loading and
operating at a skew angle of 90°, . -,
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As shown previously, .the local disk loading is proportional to I';
therefore, for uniform disk loading the circulastion is constant along
the blade. If the disk loading is triasngulsr,

so that the local disk loading 1is

Locel disk loading = RErr" z

and the average disk loading for the entire rotor is

R
Average disk losding -1—2 f %‘i‘lrl Tomr ar
#R= Yo %

b
AR

Thus, for thls caese of the triasngular disk loading,

Local disk loading = X (Average disk loading)

o ot

Py
R

Thus, the vortex fleld of a rotor with a triangular loading m=y be
represented by one positlive vortex cylinder with the ssme radius as the

blade tips and a strength 1.5 times as great s a uniformly losded rotor,

plus ten equael negative vortex cylinders of smaller radil snd a strength

0.15 times as great ss a uniformly loaded rotor. The sum of the resulting

disk losds is shown in the following sketch and adequately represents =
triangularly loaded rotor: ' '
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The contribution of each vortex cylinder, may be found from fig-
ure L(g) of reference 1. : :

The computation may be carried out in tsbular form as follows:

(Ry/R) | (X/R)(R/Ry) | (¥/R)(R/Ry) | (Z/R)(R/Ry) (v/vo),

1.00 0.200 0 0.100 1.15(1.50) = 1.725
.95 211 o] .106 1.15(-.15) = -.173
.85 .236 0 .118 1.17(-.15) = -.176
.75 267 0 134 1.19(-.15) = -.179
.65 .308 o] 154 1.20(-.15) = -.180
.55 T o .182 1.21(-.15) = -.182
45 L5 0 .22%3 1.23(-.15) = -.185
.35 .571 0 .286 1.24(-.15) = -.186
.25 .800 o] .00 1.25(-.15) = -,188
.15 1.330 0 67 «95(=.15) = -.143
.05 4.000 o] 2.000 .26(-.15) = -.039

V/VO = Z(V/VO)V = 0.0G4

It will be noted, in general, that the charts of reference 1 must
be extrapolated to cbtaln the contribution of some of the smaller
cylinders. Alsco, if the maximum loading does not occur at the tips,
more ‘than one positive vortex cylinder will be required to adequately
represent the flow.

Induced veloclty at center of rotor.- Consider a rotar with a disk
loading that 1s uniform everywhere except in a central "eut-out" portion
where 1t carries no load. See the followlng sketch.

|
|
|
]

The vortex field of this rotor may be represented by Just two vortex
cylinders of equal, But opposite, vorticity. Since the smaller cylinder
has the same downwash field as the larger cylinder (except for dimensions),
it follows that the induced velocity is zero at the center of the rotor
disk. The same result; of course, will follow whenever any rotor has

zero disk load at its center. Since all practical rotors have some cut—

out near their centers (due to hub, etc.), they all must have zero induced
veloecity at thelr centers.

L 4
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This result is a special case of a more general theorem which is
occasionally useful in comparing the results of theoretical caelculastions
made for several different load distributions. Consider a rotor with a
step loading composed of a number of uniform loads of different radii
such as 1in the followling sketch:

[T ]

I 1

L |

The vortex field of this rotor mey be represented by several vortex
cylinders of different strength. A uniformly loaded rotor produces an
induced veloeity of vy at its center. Therefore, the induced veloclty
at the eenter of the step-loaded rotor will be Vo1 (due to uniform

load 1) plus Voo (due to uniform load 2} and sc on. The final result

1s that the Induced veloclty st the center of the step-loaded rotor will
then be the same as 1if the local losd at the center existed over the
entire disk rather than Just at the center.

Calculated Results

Longitudinasl plane of symmetry.- A number of nondimensionsl charts
of the induced velocity have been computed. These charts not only illus-
trate the effect of a nonuniform disk loading, but they mey also be used as
working cherts for the determination of the induced veloclity st points
in the field of practicel rotors. The calculations were made for rotors
having two different, clrcularly symmetrical, nonuniform disk loadings.
These assumed disk loadings are shown in figure 3. The friasngular
loading was chosen since 1t i1s the simplest approximation to the actual
rotor disk loading in all flight conditions. The verlation of disk
load labeled "typical load" was meassured st a typical cruising condition
during unpublished results from tests in the langley full-scale tunnel of
a rotor equipped to measure the rotor-blade pressure distribution.

Flgure 4 presents contour charts of the normal component of induced
velocity in the longitudinal plene of symmetry for the rotor with a
trisngular disk loaedling for six different skew angles in the range from
0° to 90°., Figure 5 presents similar charts for a rotor having the
typical measured disk load distribution for three different skew angles
between 63.43° and 90°, which bracket the skew angle at which this load
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distribution waes measured. Figures 4 and 5 mey alsc be used to find the
induced velocity distribution for skew angles between 90° and 180° (the’
autorotation renge) if the Z/R scale is multiplied by -1 and the chart
for the-supplement of the desired skew angle is read

Longitudinal axis.- Figures 6 gnd T present the induced veloclty
distribution along the X-axis (or longitudinal axis) of the rotors with
the trisngular snd typlcal meassured load distributions, respectively.

Iateral axis.- Figures 8 and 9 present the induced veloclty distribu-
tion along the Y-axis (or lateral axis) of the same two rotors.

Figures 6 to 9 masy be used for skew angles from 90° to 180° merely
by reading the curves for the supplement of the desired angle.

Flgure 8 indicates the order of accuracy of the calculations. Part II
of this paper will show that the variation of induced velocity on the
lateral axis must be triangular if the disk loeding is trisngular.

Actually, figure 8 indicates a slight upward curvature. The difference
between these curves and straight lines is, however, small and could
probably have been avolded by using a somewhat- 1arger number of cylinders
to represent the wake.

Other reglons.- It would be interesting to carry out these calcula-
tions over the lateral planes where auxiliary devices such as wings, tall
surfaces, or propellers would be located on flight machines. However,
such calculations would be dependent upon a knowledge of the flow field of
the uniformly losded rotor esnd this flow field has not yet been computed.
The flow in these regions can be cslculated, if required, from considera-
tions in reference 1 and the present paper.

Discussion of Calculaeted Results

Iongitudinal plane of symmetry.- Figure 10 presents & chart of the
induced velocity in the longitudinal plane of-symmetry of a uniformly
loaded rotar st a skew angle of 63.43° (reproduced from ref. 1).

The effect of nonuniform sxisymmetric loading may be seen by comparing
figure 10 with figures L4(d) and 5(a). Since both of the assumed nonuniform
loads are zero. at the center of the rotor, the induced velocity at the
center is zero in both cases, as opposed to.a value of v/vo = 1.0 at the

center of the uniformly loaded rotor. RBoth of the nonuniformly loaded
rotors show an appreclable area-of upwash just below and behind the

center ofrotation. They also show zero induced velocity further rearward
on the center line.of the weke. 1In this plane, the chart for the trianguler
load distributlon shows e roughly triangular 1nduced-velocity profile across
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the wake, and the chart for the typical measured load distributlon shows
a more rounded profile across the wake with a larger area of zero induced
velocity reflecting the effect of the cut-out region in the vielnity of
the hub. In contrast, the results for the uniformly lozded rotor case
shows the induced velocity bullding up continucusly as the flow passes
through the rotor and resrward in the wake until 1t reaches a uniform
value of v/vg = 2.0 near the trailing edge of the rotor.

Iongitudinal axis.- Figure 11 (obtained from figs. 6, 7, and 10} shows
the calculsted effect of rotor disk-load distribution on the induced-
velocity distribution along the X-sxis (longitudinsl sxis) of the rotor.
This figure clearly shows the large effect caused by the requirement
that the Induced velocity be zero at the center of the rotor for each of
the nonuniformly loeded cases. Each of the nonuniformly loaded rotors
has en upwash Just behind its center, whereas the uniformly loaded rotor
has downwash values of v/vg > 1 in this region. The differences in
induced velocity between the nonuniformly losded rotors are small slong
this axls; however, the rotor with the typlcal measured loed distribution
does have a somevwhat greater upwash behind the center ss & result of the
Jarger cut-out region.

Iateral axis.- Flgure 12 presents & similar comparison along the
Y-exis (lateral axis) of the rotors at & skew angle of 90°. This figure
shows that the latersl center-line distribution 1s closely similar in
shepe to the distribution of losed on the disk. This similerity is
discussed Turther in part II.

It should be noted thaet the distribution given for the uniformly
loaded rotor is not the same as that given In reference 1, since in the
present paper the induced velocity is shown as belng uniform across the
lateral axis. A proof that the induced-velocity distribution must be
uniform at this location is given in part IT. In discussions between
the senlor author of reference 1 and the authors of the present psaper,
it was suggested that the inasccuracy in the plane of the disk resulted
fram a basic difficulty in the computstional procedure in the location
near the edge of the disk. It is assumed that the values glven in
reference 1 are correct for locatlions ocutside the rotor tips. The
calculations made for the present report were based on composlite curves
similer to the one shown in figure 12.

An interesting observatlon can be made from figure 12. Reference L
has shown that the uniformly lcaded rotor velues of Induced veloclty
in the plane of symmetry (ref. 1) can be used as a gulde to estimate the
average induced velocity scross a span of the order of the rotor dlameter
at any locatlion. The downwash values for the lateral sxis Justify this
result to the same order of accuracy as the measurements of reference kL,
since the averasge induced veloclty across the sparn for both. nonuniform
disk losdings is approximately the same as that for the uniformly loaded
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rotor. (That 1s, the average value of .v/vy is about 1.0 in all three
cases.) However, the differences between the results of reference 1 and
this paper in the longlitudinal plene-of symmetry indicate the possibility
of _Jarge errors if the uniformly loaded rotor flow filield 1s used to
estimate the effect of the rotor on items of appreciably different span
than the rotor.

Concluding Remasrks for Part I

A method of cslculating the effect of nonuniform circularly symmet-
rical disk-load distributions on the normel component of the 1nduced
velocity of a lifting rotor has been presented.

The induced velocity at the center of any rotor which has zero
load at its center (including all practical rotors) must be zero.

Charts have been presented for the normel component of induced
velocity along the maJor axes and for the longitudinal plane of symmetry
over g wide range of skew angles for rotors with two different, nonuniform
axlsymmetric disk loadings that are representative of the actual loading .
on the rotor disk. : ) ' ’ "’

Rotor disk-load distribution has a large effect on the induced-
velocity distributlion and must be teken Into account in estimating the
effect of the rotor on most components of gn alrcraft.

IT. SYMMETRY RELATIONS AND THE RELATION BETWEEN
RADIAL TOAD DISTRIBUTICN AND THE RADTAL
DOWNWASH DISTRIBUTICON. IN THE WAKE

By S. Katzoff

Symmetry Relstions Concerning the Induced Velocities
in the Plane of the Rotor

The first—section of part II 1s concerned with the induced fileld
of the skewed-cylinder vortex that is assumed in references 1 and 3 to
represent the wake of a uniformly loaded disk. It will be glown, without—
reference to the detailed equations ofthe flow, that the induced-
velocity fleld produced 1in the plsne of the disk by this idealized wake
possesses certaln symmetries. By providing relations between the induced
velocities at pairs of symmetrically located polnts, such symmetries are
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useful for checking the asccurscy of calculated values such as those of
reference 1. They also provide directly the values of induced velocltles
along the laterasl axis of the disk.

It will be noted that the terminology followed in this part of the
paper differs from that ususlly used in rotary-wing work. The present
notation was used in order to retaln the usual complex-variable symbols
in two-dimenslonsl flow analyses and also to avoid a confusing multi-
pliclity of subscripts. The reader should note in particular that the
normgl component of induced velocity w 1is positive upward in the

following material.

Points on the rotor disk.- In figure 13(a) consider a pair of
polnts on the rotor disk, such as P and Q, that have the same lateral

location and are symmetricglliy loceated with respect to the laters? axis.

AR LU AN LT ERE LG5 T I Wi L2 ClL ~RuCil oL Al

That is, if P 1s at point (x,y,0), then Q 1s at point (-x,y,0). Let
the three components of the induced velocity at P Dbe (ul, Vs Wl) and

at Q be (up, Vo, Wo), where the third component is generally the only
component of interest.

Now consider the entire diagram rotated 180° about the Y-axis so
that it sppears as in figure 13(b). Points P and § +thereby move %o
points P! and Q', where the induced veloclities are, respectively,

(—ul, 'V'l, —Wl) and (—112, V2, —W2)-

If figure 13(b), with the vorticity reversed, 1s fitted to fig-
ure 13(a), so that P! falls on § and §' <falls on P, the two semi-
infinite vortex cylinders form a2 single contlinuous infinlte vortex
eylinder (fig. 13(c)). The induced velocecity at the left-hand point
(P' and Q) 1is (uj+uy, vp-vy, WiiWs), and at the right-hand point
(Q* end P) it is (ujiu,, vi-vy, Witwp). The two velocities are thus
equal except for the lateral components, which are equal and opposite.

In gppendix A of reference 3, however, 1t was shown that the induced
velocity within this infinite skewed helix is uniform and hes no lstersal
component. The first result of the present discussion, then, is thet
Vo - V] =V} =V =0 or vy = vpo.

. The second result is that the sums wuj + u, end w; + wp are

uniform. That 1s, the sums of the two longitudinal camponents and of the
two verticsl components are the same for all pairs of symmetrically
located points on the disk (as P "and @), and are equal to the longi-
tudinal and vertical camponents of the Ilnduced veloeclty wilithin the
infinitely long helix. In the nomenclature of reference 3,

up +up = vy

'W'l-l W'2

I
<
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Furthermore, if points P and Q are on the latersl (Y) axis, so
that they coincide (u; = uy, and wy = wp),

Vx'
u_l = _2_
v, !

- _ 2

That 1is, the longitudinal and vertical components of the induced velocity
are constant all along the latersl diameter of the disk asnd are equsl
to the values at the center of the disk.

Points outside the rotor disk.- If points P and Q sare beyond
the edge of the rotor disk (fig. 14), the discussion proceeds as befare
except that it no longer follows that uy + uy and wq + wp are con-

stant or that v, - vo 18 zero. The reason, of course, 1s that after

superposition of the two semi-infinite skewed vortex cylinders the
points lie outside the 1nfinite—elliptic cylinder instead of inside of
it. The combined flow field outside the cylinder 1s not uniform but 1s
the same as if the cylinder haed a solid boundery. That is, the com-
bined induced flow 1s two dimensional in planes normal to the cylinder
axls and can be computed as that induced by gn elliptic cylinder in a
steady flow of velocity V cos X normal to its axis. The streamlines
of the induced flow in the normal plane are sketched in figure 15. The
camponents u' and v' of the induced flow in this plane are related
to uy +ug, vl - vo, and wl + wg as follows:

u, + u., = v' cos X

1 2

Wy + wWo = v' sin X

Vo = Vp = u' at the right-hand point (P and Q')
For points =slong the lateral axis,

v! cos X

ul+u2=2ul

I
ro
2
1

W v! sin X

1+ ¥
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Thus, for points along the lateral exis, u; and w3 can be determined
directly from the known two-dimensional flow about the ellipse.

In order +to facilitate spplicetion of these results, a few remarks
concerning the calculation of +v' are contained in the next section.

Flow about an elliptic cylinder.- Comsider (fig. 15) the flow
induced by an elliptic cylinder of semimsjor exis a and semiminor
exis b 1n a cross flow of veloeity V cos X. TIet the plane of the
figure be the 2z' plane, where 2z' = x' + 1y' (the =x' axis is parallel
to the y-axis, or the lateral exis of the disk).

The flow 1s probaebly best treated in elliptic coordlnates, related
to the rectanguler coordinates by

z! = ¢ cosh {
where
£ =¢+1n
c = a.2 - b2

The complex flow function w Ffor the field induced by the ellipse
in the steady cross flow of velocity V cos X is

w = (V cos X)ia.‘/z—fs et

(The equation may be obtained, for example, from the equation on page 256
in ref. 5 by putting U equal to zero, replacing V Dby V cos X, and
omttting the free-stresm flow function.) Then the complex velocity is

dw __ aw/ag
dz' =~ dz'/dg

(v con 1e\EEE Sy

ia‘,a.+b 2
- Ky =
(V cos )c a-b 20 _ 3

Putting ¢ =& + in and multiplying numerator and denominator by the
conjugate of the denomlinstor (e2(§—in) - l) leads to the following expres-
sion for v!', the negative of the imaginary part of %r
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b e2§ cos 21 -1
= 2(V cos X)-E"a + : ul
( c Ve - b gl 2628 com 21 +1

o a(e +b) cos 2y - e~2t
vt = (V cos X) o2 cosh 28 - cos 2y

or

Since x' + iy' = c cosh (¢ +in), the values of £ and 1 corresponding
to any point (x',y') in the field of the ellipse are cbtainsble directly
from tebles of complex hyperbolic functions (ref. €). (In using these
tables, note that 7 is given in units of x/2. It will be observed

that cos X=E and sin x=9-.)
a a

It will be noted that the points P, P', Q, and Q' I1ie in =
plane which intersects the plane of the ellipse at the angle X. However,
because of the two-dimensional charscter of the flow, the desired values
ofthe induced velocities at a point (x,y)} in the plane of the rotor may
be found at the point (x'=y, y'=x cos Xi in the plane of the ellipse.

Relations Between the Radial Verlation of Disk Loading and the

Radiel Varlstion of Downwash Velocity Within the Downstream Wake

It was shown in figure 12 that the computed lateral variation of the
downwash angle across the lateral axls resembled the assumed redisl dis-
tribution of disk loading. An effort was therefore made to determine
whether the resemblance was mainly fortuitous or whether &8 general
theoretical basis existed for it.

It was found possible to show that, for the far wake, the downwash
velocity slong any radius is proportional to rR if the disk loading
is slso proporitionsl to ril. The proportionality factor, however,
depends on n (in sddition to the azimuth). Accordingly, if the radial
disk loaeding 1s represented by & power series, the downwash velocity along
any redius 1s also represented by a power serles where, however, the
respective coefficients of the two serlies are not proportional. Thus the
radial loeding is not, in general, exactly proportional toc the radial
downwash-velocity distribution, although the two mey be nearly propor-
tional ig the radial loading is approximately proportional to, sey,
r or rc.

In the followlng development the simplest case, X = 0, will be
discussed first. The general case, O° <« X < 90°, will then be discussed.
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Finally, the particular case X = 90°, which 1s relsted to linearized
lifting-surfece theory, will be dlscussed.

The cese X = 0°.- The problem is simple for the circular wake,
X = 09, Consider first the uniformly losded disk, which produces =
single helical vortex lying along & circular cylinder. In the far
weke the downwash wlthin the cylinder is uniform, sndi there is no down-
wash at all outside the cylinder. For sn infinitesimal amulus (dr) of

disk Joading, the wake is then two concentric clrculsr cylinders having

equel and opposite vorticlty and separated by d4dr. The downwash between
the two cylinders is uniform and proportional to the annuius loading.

The downwash everywhere else 1s zero. If the disk losding is made up

of a continuous distribution of such annuli, the downwesh directly
downstream of each anmmulus is thus determined only by that snnulus loading
and is not affected by the loading of any other snnulus. For this case,

Ty gy A ol e e ot e} T ren suln  wmen et damr P e - | Tm T
Crlen, the radisl veriation of downwash veloclity 1s proportional to the

radial veriatlion of disk loading. Restricting the theorem to loadings
that sre proportionsl to r* 1s unnecessary for this case, which wilil
be redognized as merely the well-known propeller blade-element theory
applied to the far wake instead of to the disk 1tself where the induced
velocities are only half as much.

The cage O°< X < 90°.- As previously mentioned, the uniformly
loaded disk produces an ultimste wake in the form of an inelined elliptic
cylinder, within which the induced flow 1s uniform and outside of which
the induced flow is that due to an elliptic cylinder 1in the cross-flow
component of the free-stream flow. Tf the loadlng is circularly symmet-
rical but not uniform, the wake consists of a corresponding distribution
of concentric similsr elliptic eylinders, and the present problem is
concerned with the superposition of their induced flow flelds.

If each cylinder induced only the uniform internal veloclty field
and. induced no external fleld, the argument would proceed Just as for
the case X = 0° , and it would follow immediately that the radial distri-
bution of induced velocity 1s proportionel to the radial losding distri-
bution. In order to prove the theorem, then, it is only necessary to
show that the total of the external fields of the distribution of cylinders
will, along any radius, also have velocitles proportional o rn, 1f the
losding 1s proportional to ro.

Consider the flow induced by an ellipse of gliven shape snd unit
size (say unit semimsjor sxis) moving at veloeity V cos X. As previously
indicated, the induced veloclty component parallel to the minor axis
(parallel to the direction of motion of the ellipse) is the component
of interest. Along any direction © from the origin, this induced
velocity 1s a function of the radial distance p.
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If, while the shape remains constant, the linear dimensions of the
elllipse are changed by the factor k, the velocity originally existing
at redial distance p will be found at radiasl distance kp along the x
given direction 8. For the general ellipse of size Kk, then, the
veloclty component v! can be expressed as

vl = f(e,k/p)

The veloclity induced by en increment in size, or annulus, corresponding
to dk is

L ax = £1(s,x/p) K

where f' denotes the derivative with respect to k/p. If each incre-
mental veloclty is weighted by the factor kK2, the total velocity is

fK K7t (0,k/p)SE an (x/p)et (0,k/0) K
k=0 P =P k=0 ° iy

where the upper 1imit X is that value of k for which the ellipse just
touches the specified point (p,8). (As previously noted, the present
discussion concerns only the contributions of those snnull for which the
point is located externally.) Changing the varisble of integration

from k to k/p changes the form of the preceding expression to

K
pnf /e (x/0)™ £1(8,k/p)a(k/p) = p"F(6,n)
k/p=0 oA

since the upper limit K/p Is now a function only of 6. Thus, the
induced veloclty along any radisl line is proportional to p" which
was to be proved. The proportionality factor i1s a functlion of both 6
and n. It will be observed that this part of the proof can apply to
any shape, since the fact that the wake is elliptical was not required
or used in the proof.

Performing the indiceted integration in order to get the proportion-
elity factor F(6,n) 1s obviously s somewhst awkward task. Possibly
the most convenlent method is first to integrate by parts in order to
return f£' to £ (that im, v', for which an expression was previocusly
presented), and then determine the resulting integral numerically. For
elther the lateral aor longitudinal axis, however, the calculstion may
be performed without excessive difficulty. The method will be here -
indicated. : =
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For the lateral axis (n = 0), the previously derived expression for

v! reduces to
\/ 2
1= a,/a + b x! x'
v (V cos XD 2 -5 2

c

so that the problem 1s reduced to evaluating

Substituting c = x' sin a changes the integral to a form that can be
integrated by spplication of items 27L and 263 of reference 7.

For the longitudinel axis 1 = Z the expression for v' reduces to

2
2 12 _ <t
vi = —(V cos X) a\/z f E S A
2 1 g2

so that the problem is reduced to evaluating

JPEy J? +y'2 - v de
\‘ca +- y:2

Substituting c¢ = y' tan ¢ chaenges the integral to a form that can be
evaluated by application of item 274 of reference T.

The case X = 90%.- The limiting case of the flat wake is frequently
assumed for convenience 1n analyses pertaining to hlgh-speed forward flight.
Since the rotor and the wake are 1n the same plane the case 1s analogous to
that of classical linearized wing theory, with the wing In this instance
having a clrcular plan form and a clrcularly symmetrical loading.

_ Consider first a uniformly losded rotor. The “"span loed" distribu-
tion of the disk, considered es a wing, 1s then elliptical, since 1t 1s
merely proportionsl, at each spanwise station, to the '"chord". As is
well known, the downwash in the far wake behind an ellipticelly loaded
wing is uniform. Thet is, disregarding the rolling-up phenomenon, the
flow in the vertical plane normal to the far weke is the two-dlmensionsl
flow about a horizontal straight line of span equel to the rotor diameter,
2C1v 201V CVv

x (Aspect ratio) x5 /n) T T2

moving downward with a velocity equal to
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(see fig. 16). The complex velcelty for this two-dimensional flow
around the far wake is given by

%%7 =u' - ivt = CEV =iz’ + i
212 _ 12
where L - . o . o =
W complex flow function
r semispan of wing (or radius of the rotor)
z' = x' + iy' where, in the present case (X = 90°), x' 1is the same as

lateral dimension y and y' 1s the same as vertical
dimension 2z

If the radius of the uniformly loaded.cilircular wing is Increased ; -
by dr, the complex veloclty in the flow field changes by

e - F

This expression thus gives the complex veloelty 1n the far wake contributed
by a wing in the form of a circular esnnulus of redius r and width dr,

and having a lift coefficient TCp. T _ I

Now conslder a circular wing on which the loading ls proportional
to the nth power of—the radius. It is made up of amnmull of varlable
radius r and 1ift coefficient given by, say, ArD, where A 1is a
constant. The total complex velocity in the far wake 1s found by
substituting Ar® for Cy, in the preceding expression and integrating
with respect to r between O and the oubermost ammulus, r = R. The
complex veloclity is thus .

"R ArnV —irzt ). ; B )
=0 (22 - r2)5/2 |

where the upper limit R 1s greater than Iz".

In order to avold a singular point—in_ the integration, the point
z' will be assumed to lie slightly sbove the real exis and will be
allowed to approach the real axis after the integration is performed.
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Substituting r = z!' sin 8 (where 6, in general, is complex) transforms
the integral to

1n-1-E
_jAZanfs n Z‘sinn'l'ﬁ de
2 =0 cos3g

which can be evaluated by first epplylng the second form of item 274 of
reference 7 and then reduclng b/;inn"'le d8 by successlve gpplicgtions of

item 263. Except for the lamst term, the integral is

—iAz'nV[sinn'*'le tan 0 + sin®0 cos 8 + i—f‘—i s8int~-2¢ cos 6 +

@ ?(?)anz o) sin®* g cos @ + . . .]

Substituting the limits and letting 2z' become a pure resl, less then R,
results in a pure real; thaet 1s, 811 of these terms contribute nothing

to the verticel-velocity component. The final term of the integral
involves

R

R
sin~157 sin=17T
f sin 6 48 or f dae

0 )

depending on whether n is even or odd, respectively. For n even,

R lR
sin™ 7T R2
= R.P. |- \|1 - —-1 + 1
0 z'

sin"l'z'T
R.P.f sin 6 48 = R.P.(- cos @)}
0
which spproaches 1 as 2! approsches a pure real, =x'< R, since the
first term in the bracket approaches a pure imeginary. For n odd,
R R
sin™ ;v
R.P.f de = R.P.(8)
0

0

which may be eveluated as follows:

Iet
6 =p + 1q
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then . o T, s

gin 6 = sin(p + 1q) = sin p cosh ¢ + 1 cos p sinh q = ﬁ% -

Since gl approaches & pure real as z!— x', the imsginary term must

1
be zero; that 1s, cos p =0, or P = u/a. Accordingly,

R
sin‘l;T

R.P.(8) én/z

0

as 2z' approaches a pure real, x' < R. The final result for the down-
wash veloclty at the resl point =z! xt* 1is, for n odd,

Ax'nv[n(n - 2)(n - ). . (1)] )
2 [(n-k-3 .. .3

a.nd., for n .even, o R K N . oo

AxMVi|n(n - 2)(n - 4). . .(2)
2 [;n - 1)(n=-3) . . .(1)

For n = 0O, the result is %Y; for n =.l, it.is AEEEY, for n=2, it

is VAx'2; for n = 3, it is -g-chAx'3.

Conclusiaons for Pexrt II =

A study of the symmetry relstions concerning the induced veloclties
in the plane of a uniformly loeded rotor indicates that:

1. The sum of the induced velocities at points. (x,y) and (-x,y)
in the rotor disk is constant and equal to twice the induced velocity
at the center.

2. The induced velocity iz comstant 211 along the lateral diameter
of the disk.

3, The sum of the induced velocities st points (x,y) and (-x,y) in
the plene of, but outside, the rotor disk eguals the induced veloecity at
the corresponding point near the far wake This sum can be determlned -
from the two- dimensional flow about the ellipse that represents the wake
cross section. - - -
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A study of the relation between the radial load distribution and the
radial downwash distribution in the wake of s nommiformly loaded rotor
shows that, if the disk loading veries as the nth power of the radius, the

induced velocity in the far weke alsc varies as the nth power of the -
radius.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 2L, 1956.
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Figure 1.- Coordinate system of rotor and weke. Arrows denote positive
direction,

<<
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>,

(2) Uniform load.

() Nomuniform axlally symmetric load.

Figure 2.- Assumed vorbex pattern behind rotor.
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Figure L,- Conbinued,
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() %= 63.43° = ten”L 2,
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Figure k4,- Continued.
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the longitudinel plane of symetry of a rotor with a typlcal measured

mean disk load,
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(a) Rotor and wake, (b) Weke rotated 180° ahout Y-axis.

(c) Vortex cylinders shown in figures 13(a) and (b) fitted together to
form an ilnfinite cylinder.
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Figure 13.- Symmetrically lcceted points in the rotor disk.




Figure 14.- Symmetrically located points in the plene of, but outside,
the rotor disk.
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Figure 15.- Two-dimensional crossflow arcund an ellipae,
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Flgure 16.- Two-dimensionsl flow around a stralght line.
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